Part Number Hot Search : 
AS1712 C1412CUA L35120F MUR860T L35120F ES2DA ML6697CH 7503P1D
Product Description
Full Text Search
 

To Download MAX9986ETPTD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max9986 high-linearity downconversion mixer pro- vides 10db gain, +23.6dbm iip3, and 9.3db nf for 815mhz to 995mhz base-station receiver applications. with a 960mhz to 1180mhz lo frequency range, this particular mixer is ideal for high-side lo injection receiver architectures. low-side lo injection is sup- ported by the max9984, which is pin-for-pin and func- tionally compatible with the max9986. in addition to offering excellent linearity and noise perfor- mance, the max9986 also yields a high level of compo- nent integration. this device includes a double-balanced passive mixer core, an if amplifier, a dual-input lo selec- table switch, and an lo buffer. on-chip baluns are also integrated to allow for single-ended rf and lo inputs. the max9986 requires a nominal lo drive of 0dbm, and supply current is guaranteed to be below 265ma. the max9984/max9986 are pin compatible with the max9994/max9996 1700mhz to 2200mhz mixers, making this entire family of downconverters ideal for applications where a common pc board layout is used for both frequency bands. the max9986 is also func- tionally compatible with the max9993. the max9986 is available in a compact, 20-pin, thin qfn package (5mm x 5mm) with an exposed paddle. electrical performance is guaranteed over the extended -40? to +85? temperature range. applications 850mhz w-cdma base stations gsm 850/gsm 900 2g and 2.5g edge base stations cdmaone and cdma2000 base stations iden base stations predistortion receivers fixed broadband wireless access wireless local loop private mobile radios military systems microwave links digital and spread-spectrum communication systems features ? 815mhz to 995mhz rf frequency range ? 960mhz to 1180mhz lo frequency range (max9986) ? 570mhz to 850mhz lo frequency range (max9984) ? 50mhz to 250mhz if frequency range ? 10db conversion gain ? +23.6dbm input ip3 ? +12dbm input 1db compression point ? 9.3db noise figure ? 67dbc 2lo-2rf spurious rejection at p rf = -10dbm ? integrated lo buffer ? integrated rf and lo baluns for single-ended inputs ? low -3dbm to +3dbm lo drive ? built-in spdt lo switch with 49db lo1 to lo2 isolation and 50ns switching time ? pin compatible with max9994/max9996 1700mhz to 2200mhz mixers ? functionally compatible with max9993 ? external current-setting resistors provide option for operating mixer in reduced power/reduced performance mode ? lead-free package available max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch ________________________________________________________________ maxim integrated products 1 pin configuration/functional diagram and typical application circuit appear at end of data sheet. 19-3605; rev 0; 2/05 for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. evaluation kit available ordering information * ep = exposed paddle. + = lead free. d = dry pack. t = tape-and-reel. part temp range pin-package pkg code max9986etp - 40 c to + 85 c 20 thi n qfn - e p * 5m m 5m m t2055- 3 max9986etp-t - 40 c to + 85 c 20 thi n qfn - e p * 5m m 5m m t2055- 3 max9986etp+d - 40 c to + 85 c 20 thi n qfn - e p * 5m m 5m m t2055- 3 m ax 9986e tp + td - 40 c to + 85 c 20 thi n qfn - e p * 5m m 5m m t2055- 3 cdma2000 is a registered trademark of the telecommunications industry association. cdmaone is a trademark of cdma development group. iden is a registered trademark of motorola, inc.
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch 2 _______________________________________________________________________________________ absolute maximum ratings dc electrical characteristics (max9986 typical application circuit , v cc = +4.75v to +5.25v, no rf signal applied, if+ and if- outputs pulled up to v cc through inductive chokes, r 1 = 953 ? , r 2 = 619 ? , t c = -40? to +85?, unless otherwise noted. typical values are at v cc = +5v, t c = +25?, unless otherwise noted.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v cc to gnd ...........................................................-0.3v to +5.5v if+, if-, lobias, losel, ifbias to gnd...-0.3v to (v cc + 0.3v) tap ........................................................................-0.3v to +1.4v lo1, lo2, lext to gnd........................................-0.3v to +0.3v rf, lo1, lo2 input power .............................................+12dbm rf (rf is dc shorted to gnd through a balun) .................50ma continuous power dissipation (t a = +70?) 20-pin thin qfn-ep (derate 26.3mw/? above +70?)........... 2.1w ja .................................................................................+38?/w jc .................................................................................+13?/w operating temperature range (note a) ....t c = -40? to +85? junction temperature ......................................................+150? storage temperature range .............................-65? to +150? lead temperature (soldering, 10s) .................................+300? note a: t c is the temperature on the exposed paddle of the package. parameter symbol conditions min typ max units supply voltage v cc 4.75 5.00 5.25 v supply current i cc 222 265 ma lo_sel input-logic low v il 0.8 v lo_sel input-logic high v ih 2v ac electrical characteristics (max9986 typical application circuit , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 ? sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 815mhz to 995mhz, f lo = 960mhz to 1180mhz, f if = 160mhz, f lo > f rf , t c = -40? to +85?, unless otherwise noted. typical values are at v cc = +5v, p rf = -5dbm, p lo = 0dbm, f rf = 910mhz, f lo = 1070mhz, f if = 160mhz, t c = +25?, unless otherwise noted.) (note 1) parameter symbol conditions min typ max units rf frequency range f rf (note 2) 815 995 mhz (note 2) 960 1180 lo frequency range f lo max9984 570 850 mhz if frequency range f if (note 2) 50 250 mhz conversion gain g c t c = +25 c910 11 db gain variation over temperature t c = -40 c to +85 c -0.007 db/ c conversion gain flatness fl at ness over any one of thr ee fr equency b and s: f rf = 824mhz to 849mhz f rf = 869mhz to 894mhz f rf = 880mhz to 915mhz ?.15 db input compression point p 1db (note 3) 12 dbm input third-order intercept point iip3 two tones: f rf1 = 910mhz, f rf2 = 911mhz, p rf = -5dbm/tone, f lo = 1070mhz, p lo = 0dbm, t a = +25 c 21 23.6 dbm t c = +25 c to -40 c -1.7 input ip3 variation over temperature t c = +25 c to +85 c +1.0 db
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 3 note 1: all limits include external component losses. output measurements taken at if output of the typical application circuit . note 2: operation outside this range is possible, but with degraded performance of some parameters. note 3: compression point characterized. it is advisable not to operate continuously the mixer rf input above +12dbm. note 4: measured with external lo source noise filtered so the noise floor is -174dbm/hz. this specification reflects the effects of al l snr degradations in the mixer, including the lo noise as defined in maxim application note 2021. note 5: guaranteed by design and characterization. ac electrical characteristics (continued) (max9986 typical application circuit , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 ? sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 815mhz to 995mhz, f lo = 960mhz to 1180mhz, f if = 160mhz, f lo > f rf , t c = -40? to +85?, unless otherwise noted. typical values are at v cc = +5v, p rf = -5dbm, p lo = 0dbm, f rf = 910mhz, f lo = 1070mhz, f if = 160mhz, t c = +25?, unless otherwise noted.) (note 1) parameter symbol conditions min typ max units noise figure nf single sideband, f if = 190mhz 9.3 db p b loc k e r = + 8d bm 19 noise figure under-blocking f r f = 900m h z ( no si g nal ) f l o = 1090m h z f b loc k e r = 990m h z f i f = 190m h z ( n ote 4) p b loc k e r = + 11d bm 24 db p b loc k e r = + 8d bm 0.3 small-signal compression under-blocking condition p fundamental = -5dbm f f u n d a m e n ta l = 910m h z f b loc k e r = 911m h z p b loc k e r = + 11d bm 2 db lo drive -3 +3 dbm p rf = -10dbm 67 2 x 2 2lo-2rf p rf = -5dbm 62 p rf = -10dbm 87 spurious response at if 3 x 3 3lo-3rf p rf = -5dbm 77 dbc lo2 selected 42 49 lo1 to lo2 isolation p lo = +3dbm t c = +25? (note 5) lo1 selected 42 50 db lo leakage at rf port p lo = +3dbm -47 dbm lo leakage at if port p lo = +3dbm -30 dbm rf-to-if isolation 46 db lo switching time 50% of losel to if settled to within 2 50 ns rf port return loss 20 db lo1/2 port selected, lo2/1 and if terminated 27 lo port return loss lo1/2 port unselected, lo2/1 and if terminated 26 db if port return loss lo driven at 0dbm, rf terminated into 50 ? , differential 200 ? 22 db
t ypical operating characteristics (max9986 typical application circuit , v cc = +5.0v, p lo = 0dbm, p rf = -5dbm, f lo > f rf , f if = 160mhz, unless otherwise noted.) 7 8 10 9 11 12 740 790 840 890 940 990 1040 conversion gain vs. rf frequency max9986 toc01 rf frequency (mhz) conversion gain (db) t c = +85 c t c = -25 c t c = -40 c t c = +25 c 7 8 10 9 11 12 740 790 840 890 940 990 1040 conversion gain vs. rf frequency max9986 toc02 rf frequency (mhz) conversion gain (db) p lo = -3dbm, 0dbm, +3dbm 7 8 10 9 11 12 740 790 840 890 940 990 1040 conversion gain vs. rf frequency max9986 toc03 rf frequency (mhz) conversion gain (db) v cc = 4.75v, 5.0v, 5.25v 19 21 20 23 22 25 24 26 input ip3 vs. rf frequency max9986 toc04 rf frequency (mhz) input ip3 (dbm) 740 790 840 890 940 990 1040 t c = +85 c t c = -25 c t c = -40 c t c = +25 c 19 21 20 23 22 25 24 26 input ip3 vs. rf frequency max9986 toc05 rf frequency (mhz) input ip3 (dbm) 740 790 840 890 940 990 1040 p lo = +3dbm, 0dbm, -3dbm 20 19 23 22 21 25 24 26 input ip3 vs. rf frequency max9986 toc06 rf frequency (mhz) input ip3 (dbm) 740 790 840 890 940 990 1040 v cc = 5.25v v cc = 5.0v v cc = 4.75v 6 8 7 10 11 9 12 760 820 880 940 1000 noise figure vs. rf frequency max9986 toc07 rf frequency (mhz) noise figure (db) if = 190mhz t c = -40 c t c = +85 c t c = +25 c t c = -25 c 6 7 8 10 11 9 12 760 820 880 940 1000 noise figure vs. rf frequency max9986 toc08 rf frequency (mhz) noise figure (db) p lo = +3dbm, 0dbm, -3dbm if = 190mhz 6 7 8 10 11 9 12 760 820 880 940 1000 noise figure vs. rf frequency max9986 toc09 rf frequency (mhz) noise figure (db) if = 190mhz v cc = 4.75v, 5.0v, 5.25v max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch 4 _______________________________________________________________________________________
45 60 70 50 55 65 75 740 790 840 890 940 1040 2lo-2rf response vs. rf frequency max9986 toc10 rf frequency (mhz) 2lo-2rf response (dbc) p rf = -5dbm t c = -40 c, -25 c t c = +85 c t c = +25 c 990 45 60 70 50 55 65 75 740 790 840 890 940 990 1040 2lo-2rf response vs. rf frequency max9986 toc11 rf frequency (mhz) 2lo-2rf response (dbc) p lo = -3dbm p lo = +3dbm p lo = 0dbm p rf = -5dbm 45 60 70 50 55 65 75 740 790 840 890 940 990 1040 2lo-2rf response vs. rf frequency max9986 toc12 rf frequency (mhz) 2lo-2rf response (dbc) v cc = 5.0v v cc = 4.75v v cc = 5.25v p rf = -5dbm 55 80 90 65 60 75 70 85 95 740 790 840 890 940 990 1040 3lo-3rf response vs. rf frequency max9986 toc13 rf frequency (mhz) 3lo-3rf response (dbc) p rf = -5dbm t c = -40 c t c = +25 c t c = +85 c t c = -25 c 55 80 90 65 60 75 70 85 95 740 790 840 890 940 990 1040 3lo-3rf response vs. rf frequency max9986 toc14 rf frequency (mhz) 3lo-3rf response (dbc) p lo = -3dbm, 0dbm, +3dbm p rf = -5dbm 55 80 90 65 60 75 70 85 95 740 790 840 890 940 990 1040 3lo-3rf response vs. rf frequency max9986 toc15 rf frequency (mhz) 3lo-3rf response (dbc) v cc = 4.75v, 5.0v, 5.25v p rf = -5dbm 8 11 13 10 9 12 14 740 790 840 890 940 990 1040 input p 1db vs. rf frequency max9986 toc16 rf frequency (mhz) input p 1db (dbm) t c = -40 c t c = +25 c t c = +85 c t c = -25 c 8 11 13 10 9 12 14 740 790 840 890 940 990 1040 input p 1db vs. rf frequency max9986 toc17 rf frequency (mhz) input p 1db (dbm) p lo = -3dbm, 0dbm, +3dbm 8 11 13 10 9 12 14 740 790 840 890 940 990 1040 input p 1db vs. rf frequency max9986 toc18 rf frequency (mhz) input p 1db (dbm) v cc = 4.75v v cc = 5.0v v cc = 5.25v t ypical operating characteristics (continued) (max9986 typical application circuit , v cc = +5.0v, p lo = 0dbm, p rf = -5dbm, f lo > f rf , f if = 160mhz, unless otherwise noted.) max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 5
t ypical operating characteristics (continued) (max9986 typical application circuit , v cc = +5.0v, p lo = 0dbm, p rf = -5dbm, f lo > f rf , f if = 160mhz, unless otherwise noted.) 40 45 55 50 60 900 950 1000 1050 1100 1150 1200 lo switch isolation vs. lo frequency max9986 toc20 lo frequency (mhz) lo switch isolation (db) p lo = -3dbm, 0dbm, +3dbm 40 45 55 50 60 900 950 1000 1050 1100 1150 1200 lo switch isolation vs. lo frequency max9986 toc19 lo frequency (mhz) lo switch isolation (db) t c = -40 c, -25 c t c = +25 c t c = +85 c 40 45 55 50 60 900 950 1000 1050 1100 1150 1200 lo switch isolation vs. lo frequency max9986 toc21 lo frequency (mhz) lo switch isolation (db) v cc = 4.75v, 5.0v, 5.25v -40 -35 -20 -25 -30 -10 -15 900 950 1000 1050 1100 1150 1200 lo leakage at if port vs. lo frequency max9986 toc22 lo frequency (mhz) lo leakage at if port (dbm) t c = -40 c, -25 c t c = +25 c t c = +85 c -40 -35 -20 -25 -30 -10 -15 900 950 1000 1050 1100 1150 1200 lo leakage at if port vs. lo frequency max9986 toc23 lo frequency (mhz) lo leakage at if port (dbm) p lo = +3dbm p lo = 0dbm p lo = -3dbm -40 -35 -20 -25 -30 -10 -15 900 950 1000 1050 1100 1150 1200 lo leakage at if port vs. lo frequency max9986 toc24 lo frequency (mhz) lo leakage at if port (dbm) v cc = 4.75v v cc = 5.25v v cc = 5.0v -60 -40 -50 -30 900 950 1000 1050 1100 1150 1200 max9986 toc25 lo frequency (mhz) lo leakage at rf port (dbm) lo leakage at rf port vs. lo frequency t c = +85 c t c = -40 c, -25 c t c = +25 c lo leakage at rf port vs. lo frequency max9986 toc26 lo frequency (mhz) lo leakage at rf port (dbm) 1150 1100 1050 1000 950 -50 -40 -30 -60 900 1200 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max9986 toc27 lo frequency (mhz) lo leakage at rf port (dbm) 1150 1100 1050 1000 950 -50 -40 -30 -60 900 1200 v cc = 4.75v, 5.0v, 5.25v max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch 6 _______________________________________________________________________________________
rf-to-if isolation vs. rf frequency max9986 toc28 rf frequency (mhz) rf-to-if isolation (db) 990 940 890 840 790 35 40 45 50 55 60 30 740 1040 t c = -40 c, -25 c t c = +25 c t c = +85 c rf-to-if isolation vs. rf frequency max9986 toc29 rf frequency (mhz) rf-to-if isolation (db) 990 940 890 840 790 35 40 45 50 55 60 30 740 1040 p lo = +3dbm p lo = -3dbm p lo = 0dbm rf-to-if isolation vs. rf frequency max9986 toc30 rf frequency (mhz) rf-to-if isolation (db) 990 940 890 840 790 35 40 45 50 55 60 30 740 1040 v cc = 4.75v, 5.0v, 5.25v 30 40 0 35 20 25 10 15 5 740 800 860 920 980 1040 1100 rf port return loss vs. rf frequency max9986 toc31 rf frequency (mhz) rf port return loss (db) p lo = -3dbm, 0dbm, +3dbm 30 0 40 35 20 25 10 15 5 50 150 200 100 250 300 350 if port return loss vs. if frequency max9986 toc32 if frequency (mhz) if port return loss (db) v cc = 4.75v, 5.0v, 5.25v 40 0 50 30 20 10 700 800 900 1000 1100 1200 1300 lo selected return loss vs. lo frequency max9986 toc33 lo frequency (mhz) lo selected return loss (db) p lo = -3dbm p lo = 0dbm p lo = +3dbm 40 0 50 30 20 10 700 800 900 1000 1100 1200 1300 lo unselected return loss vs. lo frequency max9986 toc34 lo frequency (mhz) lo unselected return loss (db) p lo = -3dbm, 0dbm, +3dbm 220 210 240 200 230 -40 -15 10 35 85 60 supply current vs. temperature (t c ) max9986 toc35 temperature ( c) supply current (ma) v cc = 4.75v v cc = 5.0v v cc = 5.25v t ypical operating characteristics (continued) (max9986 typical application circuit , v cc = +5.0v, p lo = 0dbm, p rf = -5dbm, f lo > f rf , f if = 160mhz, unless otherwise noted.) max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 7
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch 8 _______________________________________________________________________________________ detailed description the max9986 high-linearity downconversion mixer provides 10db of conversion gain and +23.6dbm of iip3, with a typical 9.3db noise figure. the integrated baluns and matching circuitry allow for 50 ? single- ended interfaces to the rf and the two lo ports. a sin- gle-pole, double-throw (spdt) switch provides 50ns switching time between the two lo inputs with 49db of lo-to-lo isolation. furthermore, the integrated lo buffer provides a high drive level to the mixer core, reducing the lo drive required at the max9986? inputs to a -3dbm to +3dbm range. the if port incor- porates a differential output, which is ideal for provid- ing enhanced iip2 performance. specifications are guaranteed over broad frequency ranges to allow for use in cellular band gsm, cdma2000, iden, and w-cdma 2g/2.5g/3g base sta- tions. the max9986 is specified to operate over a 815mhz to 995mhz rf frequency range, a 960mhz to 1180mhz lo frequency range, and a 50mhz to 250mhz if frequency range. operation beyond these ranges is possible; see the typical operating characteristics for additional details. rf input and balun the max9986 rf input is internally matched to 50 ? , requiring no external matching components. a dc- blocking capacitor is required because the input is inter- nally dc shorted to ground through the on-chip balun. lo inputs, buffer, and balun the max9986 is ideally suited for high-side lo injec- tion applications with a 960mhz to 1180mhz lo fre- quency range. for a device with a 570mhz to 850mhz lo frequency range, refer to the max9984 data sheet. as an added feature, the max9986 includes an internal lo spdt switch that can be used for frequency-hop- ping applications. the switch selects one of the two single-ended lo ports, allowing the external oscillator to settle on a particular frequency before it is switched in. lo switching time is typically less than 50ns, which is more than adequate for virtually all gsm applica- tions. if frequency hopping is not employed, set the switch to either of the lo inputs. the switch is con- trolled by a digital input (losel): logic-high selects lo2, logic-low selects lo1. to avoid damage to the part, voltage must be applied to v cc before digital logic is applied to losel. lo1 and lo2 inputs are internally matched to 50 ? , requiring only a 82pf dc- blocking capacitor. pin description pin name function 1, 6, 8, 14 v cc power-supply connection. bypass each v cc pin to gnd with capacitors as shown in the typical application circuit . 2rf single-ended 50 ? rf input. this port is internally matched and dc shorted to gnd through a balun. requires an external dc-blocking capacitor. 3 tap center tap of the internal rf balun. bypass to gnd with capacitors close to the ic, as shown in the typical application circuit . 4, 5, 10, 12, 13, 17 gnd ground 7 lobias bias resistor for internal lo buffer. connect a 619 ? 1% resistor from lobias to the power supply. 9 losel local oscillator select. logic control input for selecting lo1 or lo2. 11 lo1 local oscillator input 1. drive losel low to select lo1. 15 lo2 local oscillator input 2. drive losel high to select lo2. 16 lext external inductor connection. connect a low-esr, 30nh inductor from lext to gnd. this inductor carries approximately 140ma dc current. 18, 19 if-, if+ differential if outputs. each output requires external bias to v cc through an rf choke (see the typical application circuit ). 20 ifbias if bias resistor connection for if amplifier. connect a 953 ? 1% resistor from ifbias to gnd. ep gnd exposed ground paddle. solder the exposed paddle to the ground plane using multiple vias.
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 9 a two-stage internal lo buffer allows a wide input power range for the lo drive. all guaranteed specifica- tions are for an lo signal power from -3dbm to +3dbm. the on-chip low-loss balun, along with an lo buffer, drives the double-balanced mixer. all interfacing and matching components from the lo inputs to the if out- puts are integrated on-chip. high-linearity mixer the core of the max9986 is a double-balanced, high- performance passive mixer. exceptional linearity is pro- vided by the large lo swing from the on-chip lo buffer. when combined with the integrated if ampli- fiers, the cascaded iip3, 2lo-2rf rejection, and nf performance is typically 23.6dbm, 67dbc, and 9.3db, respectively. differential if output amplifier the max9986 mixer has a 50mhz to 250mhz if fre- quency range. the differential, open-collector if output ports require external pullup inductors to v cc . note that these differential outputs are ideal for providing enhanced 2lo-2rf rejection performance. single- ended if applications require a 4:1 balun to transform the 200 ? differential output impedance to a 50 ? single- ended output. applications information input and output matching the rf and lo inputs are internally matched to 50 ? . no matching components are required. rf and lo inputs require only dc-blocking capacitors for interfacing. the if output impedance is 200 ? (differential). for evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50 ? single- ended output (see the typical application circuit ). bias resistors bias currents for the lo buffer and the if amplifier are optimized by fine tuning resistors r1 and r2. if reduced current is required at the expense of perfor- mance, contact the factory for details. if the ?% bias resistor values are not readily available, substitute stan- dard ?% values. lext inductor lext serves to improve the lo-to-if and rf-to-if leak- age. the inductance value can be adjusted by the user to optimize the performance for a particular frequency band. since approximately 140ma flows through this inductor, it is important to use a low-dcr wire-wound coil. if the lo-to-if and rf-to-if leakage are not critical parameters, the inductor can be replaced by a short circuit to ground. layout considerations a properly designed pc board is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and induc- tance. for the best performance, route the ground pin traces directly to the exposed pad under the package. the pc board exposed pad must be connected to the ground plane of the pc board. it is suggested that mul- tiple vias be used to connect this pad to the lower level ground planes. this method provides a good rf/ther- mal conduction path for the device. solder the exposed pad on the bottom of the device package to the pc board. the max9986 evaluation kit can be used as a reference for board layout. gerber files are available upon request at www.maxim-ic.com. power-supply bypassing proper voltage-supply bypassing is essential for high- frequency circuit stability. bypass each v cc pin and tap with the capacitors shown in the typical application circuit ; see table 1. place the tap bypass capacitor to ground within 100 mils of the tap pin. exposed pad rf/thermal considerations the exposed paddle (ep) of the max9986? 20-pin thin qfn-ep package provides a low thermal-resistance path to the die. it is important that the pc board on which the max9986 is mounted be designed to con- duct heat from the ep. in addition, provide the ep with a low-inductance path to electrical ground. the ep must be soldered to a ground plane on the pc board, either directly or through an array of plated via holes. chip information transistor count: 1017 process: sige bicmos
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch 10 ______________________________________________________________________________________ component value description l1, l2 330nh wire-wound high-q inductors (0805) l3 30nh wire-wound high-q inductor (0603) c1 10pf microwave capacitor (0603) c2, c4, c7, c8, c10, c11, c12 82pf microwave capacitors (0603) c3, c5, c6, c9, c13, c14 0.01? microwave capacitors (0603) c15 220pf microwave capacitor (0402) r1 953 ? 1% resistor (0603) r2 619 ? 1% resistor (0603) r3 3.57 ? 1% resistor (1206) t1 4:1 balun if balun u1 max9986 maxim ic table 1. component list referring to the typical application circuit pin configuration/functional diagram max9986 1 2 3 4 5 15 14 13 12 11 6 7 8910 20 19 18 17 16 gnd losel lobias tap rf v cc thin qfn v cc v cc v cc gnd gnd lo2 gnd lext ifbias if- if+ gnd lo1 gnd
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 11 t ypical application circuit max9996 1 2 3 4 5 15 14 13 12 11 6 7 8 9 10 20 19 18 17 16 gnd c4 c11 c6 c7 r2 c3 c14 c13 c15 c5 c1 rf input c10 c12 lo1 input lo2 input if output losel lobias c2 c8 c9 tap rf v cc v cc v cc losel input v cc v cc v cc v cc r1 r3 l2 l1 l3 1 3 2 6 4 t1 v cc v cc gnd gnd lo2 gnd lext ifbias if- if+ gnd lo1 gnd
max9986 sige high-linearity, 815mhz to 995mhz downconversion mixer with lo buffer/switch maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 2005 maxim integrated products printed usa is a registered trademark of maxim integrated products, inc. package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) qfn thin.eps d2 (nd-1) x e e d c pin # 1 i.d. (ne-1) x e e/2 e 0.08 c 0.10 c a a1 a3 detail a e2/2 e2 0.10 m c a b pin # 1 i.d. b 0.35x45 d/2 d2/2 l c l c e e l c c l k l l detail b l l1 e xxxxx marking g 1 2 21-0140 package outline, 16, 20, 28, 32l thin qfn, 5x5x0.8mm -drawing not to scale- l common dimensions 3.35 3.15 t2855-1 3.25 3.35 3.15 3.25 max. 3.20 exposed pad variations 3.00 t2055-2 3.10 d2 nom. min. 3.20 3.00 3.10 min. e2 nom. max. ne nd pkg. codes 1. dimensioning & tolerancing conform to asme y14.5m-1994. 2. all dimensions are in millimeters. angles are in degrees. 3. n is the total number of terminals. 4. the terminal #1 identifier and terminal numbering convention shall conform to jesd 95-1 spp-012. details of terminal #1 identifier are optional, but must be located within the zone indicated. the terminal #1 identifier may be either a mold or marked feature. 5. dimension b applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from terminal tip. 6. nd and ne refer to the number of terminals on each d and e side respectively. 7. depopulation is possible in a symmetrical fashion. 8. coplanarity applies to the exposed heat sink slug as well as the terminals. 9. drawing conforms to jedec mo220, except exposed pad dimension for t2855-1, t2855-3 and t2855-6. notes: symbol pkg. n l1 e e d b a3 a a1 k 10. warpage shall not exceed 0.10 mm. jedec t1655-1 3.20 3.00 3.10 3.00 3.10 3.20 0.70 0.80 0.75 4.90 4.90 0.25 0.25 0 -- 4 whhb 4 16 0.35 0.30 5.10 5.10 5.00 0.80 bsc. 5.00 0.05 0.20 ref. 0.02 min. max. nom. 16l 5x5 3.10 t3255-2 3.00 3.20 3.00 3.10 3.20 2.70 t2855-2 2.60 2.60 2.80 2.70 2.80 l 0.30 0.50 0.40 -- - -- - whhc 20 5 5 5.00 5.00 0.30 0.55 0.65 bsc. 0.45 0.25 4.90 4.90 0.25 0.65 - - 5.10 5.10 0.35 20l 5x5 0.20 ref. 0.75 0.02 nom. 0 0.70 min. 0.05 0.80 max. -- - whhd-1 28 7 7 5.00 5.00 0.25 0.55 0.50 bsc. 0.45 0.25 4.90 4.90 0.20 0.65 - - 5.10 5.10 0.30 28l 5x5 0.20 ref. 0.75 0.02 nom. 0 0.70 min. 0.05 0.80 max. -- - whhd-2 32 8 8 5.00 5.00 0.40 0.50 bsc. 0.30 0.25 4.90 4.90 0.50 - - 5.10 5.10 32l 5x5 0.20 ref. 0.75 0.02 nom. 0 0.70 min. 0.05 0.80 max. 0.20 0.25 0.30 down bonds allowed no yes 3.10 3.00 3.20 3.10 3.00 3.20 t2055-3 3.10 3.00 3.20 3.10 3.00 3.20 t2055-4 t2855-3 3.15 3.25 3.35 3.15 3.25 3.35 t2855-6 3.15 3.25 3.35 3.15 3.25 3.35 t2855-4 2.60 2.70 2.80 2.60 2.70 2.80 t2855-5 2.60 2.70 2.80 2.60 2.70 2.80 t2855-7 2.60 2.70 2.80 2.60 2.70 2.80 3.20 3.00 3.10 t3255-3 3.20 3.00 3.10 3.20 3.00 3.10 t3255-4 3.20 3.00 3.10 no no no no no no no no yes yes yes yes 3.20 3.00 t1655-2 3.10 3.00 3.10 3.20 yes no 3.20 3.10 3.00 3.10 t1655n-1 3.00 3.20 3.35 3.15 t2055-5 3.25 3.15 3.25 3.35 y 3.35 3.15 t2855n-1 3.25 3.15 3.25 3.35 n 3.35 3.15 t2855-8 3.25 3.15 3.25 3.35 y 3.20 3.10 t3255n-1 3.00 no 3.20 3.10 3.00 l 0.40 0.40 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** see common dimensions table 0.15 11. marking is for package orientation reference only. g 2 2 21-0140 package outline, 16, 20, 28, 32l thin qfn, 5x5x0.8mm -drawing not to scale- 12. number of leads shown are for reference only.


▲Up To Search▲   

 
Price & Availability of MAX9986ETPTD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X